

225

Abstract

This project is an attempt to implement the algorithms

described in the paper “What Makes a Patch Distinct?” by
Ran Margolin, Ayellet Tal, and Lihi Zelnik-Manor. The
goal is to take a given image and identify which parts of the
image are distinct, i.e. different, important, or useful
depending on a further task. Primary advantages of this
approach are its speed and accuracy.

1. Introduction and background
Image distinctness is a difficult problem to solve well,

and especially to solve well in a small amount of time.
Previous approaches to this paper are described in more
depth in Margolin et. al. [1], on which this paper is based,
and so we will not waste time repeating what they have said.
Instead, this paper will describe the problem in broad
strokes and how we have interpreted the algorithm
described in “What Makes a Patch Distinct?” [1] to
approach the problem.

1.1. Distinctness and how it is approached

Image distinctness detection is the problem of figuring
out which parts of an image are salient, or interesting, and
which parts of the image are not. There are two main ways
of approaching this problem: spectra (color) analysis, and
pattern analysis.

Color analysis aims to find parts of the image that are
colored most differently from the rest of the image. It is
often approached as a segmentation problem, where a k-
means clustering algorithm is fixed on the color spectra of
an image to find salient color regions.

Pattern analysis attempts to find regions of the image that
are patterned in a way unique compared to the rest of the
image. This can be done by template matching of known
patterns or by calculating RGB distance between “patches”
in the image. Patches are similarly sized segments of the
image that are used for comparing regions larger than just
pixels, which are too small to contain any useful
information.

The approach used in “What Makes a Patch Distinct” [1]
is a combined approach of color and pattern analysis, with
some interesting flavor added based on some intuitive ideas
about how information in images is generally constructed.
For starters, we begin not just with segmenting the image
into patches, but with segmenting the image into so-called
SLIC superpixels as described by Achanta et. al. in their
paper “SLIC Superpixels” [2].

1.2. SLIC Superpixels

It is a ham-fisted approach to segment an image into NxN
patches. The patches are arbitrary and don’t conform to any
intuitive understanding of an image region. They are useful
for computational purposes, but they discard potentially
valuable semantic information in the image. Since semantic
information is useful in describing distinctness, we wish to
retain it. Enter SLIC superpixels.

The concept of a superpixel is a segmented region of the
image that doesn’t necessarily conform to a grid pattern, but
which conforms to boundaries within the image. So,
intuitively, pixels within a superpixel ought to be relatively
similar to one another as shown in Fig 1.

Figure 1 A segmented image of a toy shepherd

A SLIC superpixel is a superpixel generated using the
SLIC algorithm as proposed by Achanta et. al. [2]. SLIC
stands for simple linear iterative clustering, and performs
this segmentation task based on CIELAB color space. For

“What Makes a Patch Distinct?”: An Attempt

Jake Oliger

Indiana University
107 S Indiana Avenue
joliger@indiana.edu

226

the purposes of this project, we use the SLIC
implementation included in Scikit-Image.

2. Methods

Our method, however, will not work on superpixels
alone. So, we will use the superpixels to determine the
patches that contain the most variance, as these regions are
most likely to contain intuitively distinct patches, and
ignore the rest of the images. The Margolin et. al. paper
suggests taking the 25% most variant superpixels. Using
these superpixels, we move on to the pattern and color
analysis.

2.1. Pattern analysis

From there, it is somewhat unclear exactly how they
proceed in terms of patch selection. We implemented what
can be thought of as a grid approach, where the image is
broken down into a grid with squares of size NxN. The grid
squares don’t overlap each other, and squares that are split
between two superpixels are ignored. Patches outside of our
most salient superpixels are also ignored.

This is where Margolin et. al. pop off. Instead of
calculating a simple Euclidean distance between one patch
and all other patches, they pull two interesting tricks. First,
they calculate the distance of all patches against just an
average patch instead of all other patches, saving huge
amounts of computation. Second, they calculate the
distance in principal component analysis space instead of
normal color space, thus preserving the internal statistics of
each patch which leads to a better overall measure of
distinctness between patches.

One final flavor addition to this patch distinctness
measurement is combining the results from multiple
resolutions. We were unsure if this meant multiple patch
resolutions or multiple image resolutions, so we went ahead
and implemented both. The distances are measured for the
variety of patch sizes and image sizes and averaged to give
us a more detailed map of salience. The result of this
calculation, both before combination and after, in image
form for the shepherd image is shown in Fig 2.

For our implementation, we created a new array
representing the image and for each pixel in one of our
patches, we placed the distance value for the patch as a
whole. This lets us combine the salience from other metrics
more easily. Importantly, we also normalize the distances
so they are all between 0.0 and 1.0.

Figure 2 Left, the pattern distinctness distances calculated
for the shepherd with a full image resolution and a patch
size of 3. Right, the averaged distance calculations of
patches of size 3, 6, and 9, and sizes 100, 50, and 25%.

2.2. Color analysis

For analyzing color distinctness, we don’t need to use
patches because the superpixels already contain
semantically useful color segmentation. So, as described in
Margolin et. al., we compare the average color of a
superpixel with the average color of all other superpixels,
and store this difference in an MxM matrix where M is the
number of superpixels. Then the summation of each row (or
column) of that matrix is equivalent to the distance of
superpixel M from all other superpixels in RGB color
space. The Margolin et. al. paper uses CIELAB color space,
but for simplicity we ignored this conversion. The result of
this calculation is shown in Fig 3.

The distance for each pixel then is set to the distance of
the parent superpixel, again normalized to be a value in the
inclusive range of 0.0 and 1.0.

Figure 3 The color distance calculations for each segment
in image form for the shepherd image. Left, for a single
setting. Right, the averaged results of many settings as
described in Figure 2.

227

2.3. Combining analyses

As described in Margolin et. al., to combine the pattern
and color distance maps, we simply multiply the averaged
maps for normalized pattern and color distances together
elementwise. The resulting map is shown in Fig 4,
alongside a color-modified version of the same image
which simply masks the original image with the salience
map to color it in. The more vivid regions correspond to
more salience.

Figure 4 Our beloved shepherd, arriving as his destinated
of determined salience. Left, raw salience as an image.
Right, colorized using colors from original image scaled
with salience intensity.

2.4. What we left out

Left out of this implementation for reasons of primarily
time are the Gaussian filters meant to apply an intuitive
understanding of salient smoothness and where salience
generally is within an image. Inclusion of this in a future
iteration of this project would lead to much improvement.

3. Results
The results for one image have been shown as we walked

through the algorithm. The results for other images are
shown in this section. We had a hard time finding the source
images used in the original paper – the shepherd was ripped
from the PDF – so instead we use our own personal images.
The author dabbles in photography, so images were
selected from his personal stash to exhibit a variety of
potential salience, ranging from images that intuitively
should be easy for the algorithm and images for which
distinctness is at least intuitively illusive.

Due to the nature of these results and the lack of ground
truths, our results are qualitative rather than quantitative.
This is in part due to the nature of our dataset (we do not
have one) but also due to the illusive nature of exactly what
salience or distinctness are. They may be different for
different applications, and so a generalized algorithm to
determine salience is nigh impossible. This is just a starting

point for further investigation and fine-tuning for specific
problems, as is touched upon in the ensuing discussion.

Figure 5 A peach rose. Above, the original image. Below,
the color-masked salience detected by our implementation.

Figure 6 The author and his sister at Cannon Beach, OR,
in front of the iconic Haystack Rock. Above, the original
image. Below, the raw salience. The color map is difficult
to see, so it is not shown.

228

Figure 7 A chicken, now deceased, grazing in a backyard
during autumn. Above, the original image. Below, the
color-masked salience.

 The algorithm shows fairly good results on the above
images, all things considered. The flower in Fig 5 is of
course the best of them all, with a fairly obvious flower
shining through in the color-masked salience image. The
picture of the author and his sister in Fig 6 shows
reasonable results as well. The shoreline and the torsos of
the individuals are captured well, and are intuitively the
most salient parts of the image. Interestingly, faces do not
seem to be captured well by this algorithm in either Fig 6
or in Fig 4 with the shepherd.
 Things go downhill a bit with the chicken in Fig 7. The
chicken does appear, but so do many obviously not
distinct leaves. This is probably mostly due to an issue
with SLIC superpixel segmentation. Fig 8 shows how the
segmentation played out.

Figure 8 The SLIC superpixel segmentation of the

chicken from Fig 7.

As you can see, the segmentation has gone awry,
showing reasonably segments for the chicken itself (at
least its lower half) as well as for the leaves on the bottom
half of the image, but the top half of the image is
seemingly split into two large regions bordered in between
by many, many small “super”-pixels. This lead the
obviously quite variant lower super-duper-pixel to show
up disproportionately in the final salience map.

4. Discussion and conclusion
We have shown how even a crude implementation of

the work of Margolin et. al. leads to interesting results in
salience. We have discussed at some length the accuracy
of this approach, but thus far we have almost entirely
neglected one of its other great advantages: its speed. For
the shepherd image, even using a combination of many
different parameters for determining salience, it runs in
less than 15 seconds. This means it is easy to iterate on
this algorithm, and it can even run in reasonable times for
larger images such as the personal ones provided in this
paper.

As mentioned in section 2.4, we did not include the
very interesting Gaussian improvement mentioned in
Margolin et. al. This is one blindingly obvious next step in
improving our implementation. Additionally, it is clear
from Fig 8 that some tweaking of the SLIC superpixel
generation is required for more optimal results in naturally
noisy images. It would also be great to obtain some of the
datasets used by Margolin et. al. and compare our results
to theirs.

It is maybe not obvious from reading this paper, but
there were multiple points where we had to assume how a
given calculation was made. In some cases, we may have
been in error, and in other cases, we implemented multiple
possibilities and combined them. This slowed the program
down and may have led to worse results than Margolin et.
al. were able to achieve. Still, the robustness of the method
shone through. With some further refinements, results
could be spectacular.

References
[1] R. Margolin, A. Tal and L. Zelnik-Manor, "What Makes a

Patch Distinct?," 2013 IEEE Conference on Computer Vision
and Pattern Recognition, 2013, pp. 1139-1146, doi:
10.1109/CVPR.2013.151.

[2] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien
Lucchi, Pascal Fua, and Sabine S¨usstrunk, SLIC
Superpixels, EPFL Technical Report 149300, June 2010.

	1. Introduction and background
	1.1. Distinctness and how it is approached
	1.2. SLIC Superpixels
	2. Methods
	2.1. Pattern analysis
	2.2. Color analysis
	2.3. Combining analyses
	2.4. What we left out

	3. Results
	4. Discussion and conclusion
	References

