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Abstract 

 
This project is an attempt to implement the algorithms 

described in the paper “What Makes a Patch Distinct?” by 
Ran Margolin, Ayellet Tal, and Lihi Zelnik-Manor. The 
goal is to take a given image and identify which parts of the 
image are distinct, i.e. different, important, or useful 
depending on a further task. Primary advantages of this 
approach are its speed and accuracy. 
 

1. Introduction and background 
Image distinctness is a difficult problem to solve well, 

and especially to solve well in a small amount of time. 
Previous approaches to this paper are described in more 
depth in Margolin et. al. [1], on which this paper is based, 
and so we will not waste time repeating what they have said. 
Instead, this paper will describe the problem in broad 
strokes and how we have interpreted the algorithm 
described in “What Makes a Patch Distinct?” [1] to 
approach the problem. 

1.1. Distinctness and how it is approached 

Image distinctness detection is the problem of figuring 
out which parts of an image are salient, or interesting, and 
which parts of the image are not. There are two main ways 
of approaching this problem: spectra (color) analysis, and 
pattern analysis. 

Color analysis aims to find parts of the image that are 
colored most differently from the rest of the image. It is 
often approached as a segmentation problem, where a k-
means clustering algorithm is fixed on the color spectra of 
an image to find salient color regions. 

Pattern analysis attempts to find regions of the image that 
are patterned in a way unique compared to the rest of the 
image. This can be done by template matching of known 
patterns or by calculating RGB distance between “patches” 
in the image. Patches are similarly sized segments of the 
image that are used for comparing regions larger than just 
pixels, which are too small to contain any useful 
information. 

The approach used in “What Makes a Patch Distinct” [1] 
is a combined approach of color and pattern analysis, with 
some interesting flavor added based on some intuitive ideas 
about how information in images is generally constructed. 
For starters, we begin not just with segmenting the image 
into patches, but with segmenting the image into so-called 
SLIC superpixels as described by Achanta et. al. in their 
paper “SLIC Superpixels” [2]. 

1.2. SLIC Superpixels 

It is a ham-fisted approach to segment an image into NxN 
patches. The patches are arbitrary and don’t conform to any 
intuitive understanding of an image region. They are useful 
for computational purposes, but they discard potentially 
valuable semantic information in the image. Since semantic 
information is useful in describing distinctness, we wish to 
retain it. Enter SLIC superpixels. 

The concept of a superpixel is a segmented region of the 
image that doesn’t necessarily conform to a grid pattern, but 
which conforms to boundaries within the image. So, 
intuitively, pixels within a superpixel ought to be relatively 
similar to one another as shown in Fig 1. 

 

 
Figure 1 A segmented image of a toy shepherd 
 

A SLIC superpixel is a superpixel generated using the 
SLIC algorithm as proposed by Achanta et. al. [2]. SLIC 
stands for simple linear iterative clustering, and performs 
this segmentation task based on CIELAB color space. For 
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the purposes of this project, we use the SLIC 
implementation included in Scikit-Image. 

2. Methods 

Our method, however, will not work on superpixels 
alone. So, we will use the superpixels to determine the 
patches that contain the most variance, as these regions are 
most likely to contain intuitively distinct patches, and 
ignore the rest of the images. The Margolin et. al. paper 
suggests taking the 25% most variant superpixels. Using 
these superpixels, we move on to the pattern and color 
analysis. 

2.1. Pattern analysis 

From there, it is somewhat unclear exactly how they 
proceed in terms of patch selection. We implemented what 
can be thought of as a grid approach, where the image is 
broken down into a grid with squares of size NxN. The grid 
squares don’t overlap each other, and squares that are split 
between two superpixels are ignored. Patches outside of our 
most salient superpixels are also ignored. 

This is where Margolin et. al. pop off. Instead of 
calculating a simple Euclidean distance between one patch 
and all other patches, they pull two interesting tricks. First, 
they calculate the distance of all patches against just an 
average patch instead of all other patches, saving huge 
amounts of computation. Second, they calculate the 
distance in principal component analysis space instead of 
normal color space, thus preserving the internal statistics of 
each patch which leads to a better overall measure of 
distinctness between patches. 

One final flavor addition to this patch distinctness 
measurement is combining the results from multiple 
resolutions. We were unsure if this meant multiple patch 
resolutions or multiple image resolutions, so we went ahead 
and implemented both. The distances are measured for the 
variety of patch sizes and image sizes and averaged to give 
us a more detailed map of salience. The result of this 
calculation, both before combination and after, in image 
form for the shepherd image is shown in Fig 2. 

For our implementation, we created a new array 
representing the image and for each pixel in one of our 
patches, we placed the distance value for the patch as a 
whole. This lets us combine the salience from other metrics 
more easily. Importantly, we also normalize the distances 
so they are all between 0.0 and 1.0.  

 
 

  
Figure 2 Left, the pattern distinctness distances calculated 
for the shepherd with a full image resolution and a patch 
size of 3. Right, the averaged distance calculations of 
patches of size 3, 6, and 9, and sizes 100, 50, and 25%.  

2.2. Color analysis 

For analyzing color distinctness, we don’t need to use 
patches because the superpixels already contain 
semantically useful color segmentation. So, as described in 
Margolin et. al., we compare the average color of a 
superpixel with the average color of all other superpixels, 
and store this difference in an MxM matrix where M is the 
number of superpixels. Then the summation of each row (or 
column) of that matrix is equivalent to the distance of 
superpixel M from all other superpixels in RGB color 
space. The Margolin et. al. paper uses CIELAB color space, 
but for simplicity we ignored this conversion. The result of 
this calculation is shown in Fig 3. 

The distance for each pixel then is set to the distance of 
the parent superpixel, again normalized to be a value in the 
inclusive range of 0.0 and 1.0. 

 

  
Figure 3 The color distance calculations for each segment 
in image form for the shepherd image. Left, for a single 
setting. Right, the averaged results of many settings as 
described in Figure 2. 
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2.3. Combining analyses 

As described in Margolin et. al., to combine the pattern 
and color distance maps, we simply multiply the averaged 
maps for normalized pattern and color distances together 
elementwise. The resulting map is shown in Fig 4, 
alongside a color-modified version of the same image 
which simply masks the original image with the salience 
map to color it in. The more vivid regions correspond to 
more salience. 

 

  
Figure 4 Our beloved shepherd, arriving as his destinated 
of determined salience. Left, raw salience as an image. 
Right, colorized using colors from original image scaled 
with salience intensity. 

2.4. What we left out 

Left out of this implementation for reasons of primarily 
time are the Gaussian filters meant to apply an intuitive 
understanding of salient smoothness and where salience 
generally is within an image. Inclusion of this in a future 
iteration of this project would lead to much improvement. 

3. Results 
The results for one image have been shown as we walked 

through the algorithm. The results for other images are 
shown in this section. We had a hard time finding the source 
images used in the original paper – the shepherd was ripped 
from the PDF – so instead we use our own personal images. 
The author dabbles in photography, so images were 
selected from his personal stash to exhibit a variety of 
potential salience, ranging from images that intuitively 
should be easy for the algorithm and images for which 
distinctness is at least intuitively illusive. 

Due to the nature of these results and the lack of ground 
truths, our results are qualitative rather than quantitative. 
This is in part due to the nature of our dataset (we do not 
have one) but also due to the illusive nature of exactly what 
salience or distinctness are. They may be different for 
different applications, and so a generalized algorithm to 
determine salience is nigh impossible. This is just a starting 

point for further investigation and fine-tuning for specific 
problems, as is touched upon in the ensuing discussion. 

 

 

 
Figure 5 A peach rose. Above, the original image. Below, 
the color-masked salience detected by our implementation. 
 

 

 
Figure 6 The author and his sister at Cannon Beach, OR, 
in front of the iconic Haystack Rock. Above, the original 
image. Below, the raw salience. The color map is difficult 
to see, so it is not shown. 



 

228 

 

 
Figure 7 A chicken, now deceased, grazing in a backyard 
during autumn. Above, the original image. Below, the 
color-masked salience. 
 
 The algorithm shows fairly good results on the above 
images, all things considered. The flower in Fig 5 is of 
course the best of them all, with a fairly obvious flower 
shining through in the color-masked salience image. The 
picture of the author and his sister in Fig 6 shows 
reasonable results as well. The shoreline and the torsos of 
the individuals are captured well, and are intuitively the 
most salient parts of the image. Interestingly, faces do not 
seem to be captured well by this algorithm in either Fig 6 
or in Fig 4 with the shepherd. 
 Things go downhill a bit with the chicken in Fig 7. The 
chicken does appear, but so do many obviously not 
distinct leaves. This is probably mostly due to an issue 
with SLIC superpixel segmentation. Fig 8 shows how the 
segmentation played out. 
 

 
Figure 8 The SLIC superpixel segmentation of the 

chicken from Fig 7. 
 

As you can see, the segmentation has gone awry, 
showing reasonably segments for the chicken itself (at 
least its lower half) as well as for the leaves on the bottom 
half of the image, but the top half of the image is 
seemingly split into two large regions bordered in between 
by many, many small “super”-pixels. This lead the 
obviously quite variant lower super-duper-pixel to show 
up disproportionately in the final salience map. 

4. Discussion and conclusion 
We have shown how even a crude implementation of 

the work of Margolin et. al. leads to interesting results in 
salience. We have discussed at some length the accuracy 
of this approach, but thus far we have almost entirely 
neglected one of its other great advantages: its speed. For 
the shepherd image, even using a combination of many 
different parameters for determining salience, it runs in 
less than 15 seconds. This means it is easy to iterate on 
this algorithm, and it can even run in reasonable times for 
larger images such as the personal ones provided in this 
paper. 

As mentioned in section 2.4, we did not include the 
very interesting Gaussian improvement mentioned in 
Margolin et. al. This is one blindingly obvious next step in 
improving our implementation. Additionally, it is clear 
from Fig 8 that some tweaking of the SLIC superpixel 
generation is required for more optimal results in naturally 
noisy images. It would also be great to obtain some of the 
datasets used by Margolin et. al. and compare our results 
to theirs. 

It is maybe not obvious from reading this paper, but 
there were multiple points where we had to assume how a 
given calculation was made. In some cases, we may have 
been in error, and in other cases, we implemented multiple 
possibilities and combined them. This slowed the program 
down and may have led to worse results than Margolin et. 
al. were able to achieve. Still, the robustness of the method 
shone through. With some further refinements, results 
could be spectacular. 
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